
MARINA CABRINI, GIOVANNI FRANZA, PAOLO SCHGÖR,
EUGENIO SCHININÀ, GIUSEPPE ZERBI

THE ALL-ROUND
IT PROFESSIONAL
Part B. Build Knowledge Area:
Acquisition, Development
and Implementation of
Information Systems

FrancoAngeli

MARINA CABRINI,
GIOVANNI FRANZA,
PAOLO SCHGÖR,
EUGENIO SCHININÀ,
GIUSEPPE ZERBI

THE ALL-ROUND
IT PROFESSIONAL

Part B
Build Knowledge Area:
Acquisition, Development and
Implementation of Information Systems

FrancoAngeli

This publication is based on:

Marina Cabrini, Giovanni Franza, Paolo Schgör, Eugenio Schininà, Giuseppe Zerbi, Professione
informatica. Vol. II – Realizzazione di sistemi informativi. Competenze interdisciplinari per
l'applicazione delle tecnologie dell'informazione e della comunicazione nel mondo del lavoro,
FrancoAngeli, Milano 2004.

This publication is a working translation of the above text in the English language and do not
pretend to do credit to the original Italian text. It has been prepared for the following purpose and
target groups:
• Trainers and Lecturers: to allow them to prepare didactic material and courseware for the
EUCIP Core training courses.
• Candidates for EUCIP Core certification: to be used as learning material to supplement EUCIP
Core training.

Development:
The EUCIP Core Syllabus at [www.eucip.com] specifies the content of the EUCIP
Core certification domain. This English language working translation can be used in conjunction
with the EUCIP Core Syllabus as a basis to prepared further courseware in any language and in
particular English language courseware.

ISBN: 978-88-464-8560-1

Copyright © 2007 by FrancoAngeli s.r.l., Milano, Italy.

L’opera, comprese tutte le sue parti, è tutelata dalla legge sul diritto d’autore. L’Utente nel momento in
cui effettua il download dell’opera accetta tutte le condizioni della licenza d’uso dell’opera previste e

comunicate sul sito www.francoangeli.it.

3

Summary

Introduction p. 5

The Need for Common Competences and References » 5
Book Structure » 6
Acknowledgements » 7
EUCIP Certification Structure » 7
The Three Knowledge Areas » 9

PART B

BUILD KNOWLEDGE AREA: ACQUISITION
DEVELOPMENT AND IMPLEMENTATION

OF INFORMATION SYSTEMS

B.1. Systems Development Process and Methods » 13

B.1.1. Application Software and System Software » 13
B.1.2. Systems Development Principles and Methodologies » 16
B.1.3. Systems Development Tools » 32
B.1.4. Software and System Testing » 36
B.1.5. System Implementation » 42
B.1.6. System Control and Safety » 44
B.1.7. Trends in Systems Development » 47

B.2. Data Management and Databates » 55

B.2.1. Data and Transactions » 55
B.2.2. Data Modeling » 61
B.2.3. Files and Databates » 66
B.2.4. Database Management Systems » 70
B.2.5. Data Warehousing and Data Mining » 72
B.2.6. The Relational Model » 75
B.2.7. Queries and Reports » 80
B.2.8. Database Administration » 93
B.2.9. Security and Integrity of Data » 96

4

B.3. Programming p. 99
B.3.1. Software Design Methods and Techniques » 99
B.3.2. Data Structures and Algorithms » 112
B.3.3. Types of Programming Languages » 117
B.3.4. Introduction to Programming Concepts » 124
B.3.5. Testing » 132
B.3.6. Documentation » 143
B.3.7. Maintenance » 151
B.3.8. Programming Examples » 163

B.4. User Interface and Web Design » 173

B.4.1. Human Computer Interaction » 173
B.4.2. Graphic Design » 175
B.4.3. Current Methods and Techniques » 182
B.4.4. Guidelines and Standards for User Interfaces » 185
B.4.5. Characteristics of the Web, its Possibilities and

Constraints

»

187

B.4.6. Hypertext and Hypermedia » 192
B.4.7. Central Problems in Web Design » 194
B.4.8. Designing Web Pages » 197

Appendix I: EUCIP Programming Language (EPL) » 205

Expressions » 205
Declarations » 206
Statements » 207
External Definitions » 208

About the Authors » 210

5

Introduction

The Need for Common Competences and References

The spread of IT has brought a very wide public to face arguments
(ranging from the concept of bit to the JPEG format) which were, up
to not too many years ago, a prerogative of a few specialists.

The growing IT literacy that characterizes advanced societies does
not mean however that specialized competences are not needed
anymore. On the contrary, the demarcation line between “users” and
“professionals” is thicker and thicker, and the differences between
distinct professional specializations are such that a network
administrator for a large company has very little in common with a
Java programmer involved in the integration of information systems
at some other company or with a pre-sale consultant working for a
company that develops and commercializes CAD systems.

The risk that exists in this context is a great confusion, in which
many individuals think they have good IT competences, but they are
unable to communicate (due to language issues to begin with) with
other groups of theoretically analogous people, who are also
specialists in fields that may differ from the IT sector only for some
marginal details.

The task of assessing IT competences turns out to be even more
difficult (maybe) for those who are alien to the field. Suffice it to
think of those who are called to promote learning initiatives in order
to favour social development, or of human resource managers
attempting to select candidate employees or to establish criteria for
internal appraisal and stimulations of professional excellence.

It is therefore important to define a reference outline for helping
one to identify some firm points of cross-sectional competences

6

common to all IT professionals, that is those who do not simply use
IT for their work, but are instead IT craftsmen themselves. All the
technicians who work for companies of the IT industry as well as all
the staff dedicated to IT support at companies and organizations
operating in other industries fall into this category.

The definition of such a reference outline for IT competences is the
objective that has carried in 2000 to the formation of an international
working group promoted by CEPIS (the Council of European
Professional Informatics Societies). The outcome is the EUCIP
(European Certification of Informatics Professionals) program,
described in the last two sections of this introductory chapter.

Book Structure
The contents of this book correspond, also in the organization of

arguments, to the Syllabus (included as an appendix) that defines the
basic competence requirements necessary to get the EUCIP
certification. Due to the vastness of the arguments which are dealt
with, it has been chosen to subdivide the book in three volumes. Such
a subdivision, in addition to corresponding to the EUCIP base level
structure (which consists of three distinct examinations in the “Plan”,
“Build” and “Operate” areas), also reflects a logical distinction
between discipline contexts.

This first volume deals with topics relating to the planning, to the
use, and to the management of information systems and it therefore
exposes a number of elementary concepts on information processing
service “clients”. An overview is thus given on organizations, on
business process management, on project management, on legal and
economic implications of IT investments, often from a “consulting”
point of view, in the conviction that IT specialists must understand the
real requirements and the context to which technology is intended.

The second volume deals with arguments related to the realization
of information systems, with particular emphasis on software, meant
as a development object.

Finally, the third and last volume of the series deals with problems
related to operation and operating support of the information systems,
emphasizing hardware components, operating systems, communication

7

networks, and the delivery modalities of a support service oriented to a
customer-supplier logic, which is already indicated as necessary in this
first volume.

Acknowledgements
Many people have contributed with several suggestions and

comments to writing this text: Raffaele Brmabilla, Cino Bocchi and
Enrico Carrara. The authors also wish to acknowledge the entire AICA
(Italian Association for IT and Automated Processing) structure, for
sponsorship and support. A particularly warm thanks goes to AICA
president Giulio Occhini, who has the merit of having been the first to
realize the necessity of defining reference criteria for IT competences
and of having constantly and tenaciously devoted energies and
resources to the EUCIP project, as well as to several projects which led
to the definition of the ECDL (European Computer Driver Licence)
certification, from the core level up to the IT Administrator level, which
is synergic to many of the contents of EUCIP certification itself.

EUCIP Certification Structure

PLAN
The use and

management of
Information

Systems

OPERATE
Operations and

Support of
Information Systems

CORE LEVEL

Typically 400 hours
of study time

Compulsory

ELECTIVE
LEVEL

Typically 800 hours
of study time

Mix of Vendor and
Vendor-independent
LearningProviders

BUILD
Acquisition,

development and
implementation

of Information Systems

Management
VOCATIONAL
STRUCTURE

Based on the needs of
User industry and IT

services industry
Policy, planning

& research Systems

development &

maintenance

Service delivery

Technical advice

& consultancy

QualityCustomer

relations
Support &

administration

PLAN
The use and

management of
Information

Systems

OPERATE
Operations and

Support of
Information Systems

CORE LEVEL

Typically 400 hours
of study time

Compulsory

ELECTIVE
LEVEL

Typically 800 hours
of study time

Mix of Vendor and
Vendor-independent
LearningProviders

BUILD
Acquisition,

development and
implementation

of Information Systems

Management
VOCATIONAL
STRUCTURE

Based on the needs of
User industry and IT

services industry
Policy, planning

& research Systems

development &

maintenance

Service delivery

Technical advice

& consultancy

QualityCustomer

relations
Support &

administration

fig.I.1 –EUCIP conceptual structure

8

The EUCIP programme includes two certification levels, the second
of which refers to a vocational structure.

• Core level: includes necessary competences, common to all of

the paths, and covers the three fundamental processes: plan,
build, and operate. A 60 minute exam corresponds to each of
these three areas with multiple choice questions extracted from a
question and test base (QTB). Preparation for the core level exam
is estimated to require about 400 study hours, equally distributed
among the three processes cited, for a university level student.

• Elective level: the elective level permits the choice of a
specialised competence. The student has the power to arrange,
with some level of freedom, elements of different areas of
competence, including vendor modules as well as independent
courses and modules. The overall path is expected to take about
800 hours of study, and the final exam for the certification is
taken in the presence of an EUCIP examination board. The
candidate provides the board with documentation that certifies
the path studied and the realized projects prior to the exam. The
combination of courses chosen by the student must correspond to
one of the prescribed curricula (see the next point), thus guiding
the candidate to a determined professional IT category.

• Vocational structure: the elective profiles, like, for example,
Business Analyst, Information Systems Project Manager,
Software Developer or Network Manager, correspond to typical
profiles within businesses of the IT industry or other sectors. This
structure of the EUCIP elective profiles aims to define the
correspondence between the professional figures and the concrete
requirements on various areas of knowledge and within the
described elective level. The form is typically that of a study
curriculum that describes how one can combine available
modules to satisfy the requirements of the chosen position. For
example, the profile of Network Administrator requires various
education modules in the “Operate” area.

9

The Three Knowledge Areas
A. Plan – It refers to requirements analysis and the planning of the

use of information technologies, and it is therefore strictly
connected to the management processes and to the definition of
the business needs in the ICT sphere put into the context of a
strategic perspective. Important elements within this area are, for
example, the traditional notions of business organization, return
of investments, financing, risk, etc.

B. Build – Includes the processes of specification, development and
integration of IT systems. The central node of the area is
represented by traditional aspects of development,
implementation, and integration of IT systems.

C. Operate – This area regards the installation, supervision and
maintenance of IT systems. It is characterized by arguments like
network management, change management, service and delivery
support, etc.

Part B
Build Knowledge Area:

Acquisition, Development and
Implementation of Information Systems

13

B.1. Systems Development Process and Methods

B.1.1. Application Software and System Software

Even though the notion of software is a concept that is in
continuous evolution in step with information systems technologies,
it is useful to make an important distinction.

First of all, it is worth highlighting that the main goal is to
subdivide the world of programs in order to analyse essential aspects
based on characteristics common to each group.

According to its specific use, software can be classified into
application software and system software.

An initial way of defining the two software classifications is
through a relational approach. System software is defined as any
program that supports the execution of applications, without being
specific to any one application.

If you picture an organisation made up of layers and levels, you can
identify system software that is positioned at a “low” level, near to the
physical resources of the machine that runs them. Application software
is positioned at a “high” level, farther from the hardware itself
(according to the “onion” model of operating systems Sect. C.2.1.).

It is clear that the definitions significantly depend on the type of
machine on which they are executed.

Nevertheless, it is possible to identify a few of the main system
functions, including:

• the management of hardware interfaces
• the scheduling of processes

14

• the allocation of memory
• the user interface if no applications are active.

An operating system is the most common example of system

software.
There are different schools of thought regarding the basic

functions in the characteristics of the system, some of which include
responsibilities, like a graphical user interface. Others would,
instead, tend to exclude parts like the loader, Basic Input Output
System (BIOS), or boot or installation firmware.

Refer to the bibliography, concerning operating systems, like
Linux1 , or to the virtual community for systems development
http://dmoz.org/Computers/Programming/Operating_Systems

On the other hand, it is possible to adopt a definition of
application software that would include all of the programs that
carry out a specific function for the user.

In this case, there are supporters of the theory that a client and a
server together form a distributed application. Others argue that the
editors and compilers, rather than applications, should be considered
tools for construction of other applications.

It is also useful to note that the distinction between system and
application software often lies in the fact that one comes from the
machine executed in privileged mode, while the other in user or not-
privileged mode.

Some programs do in fact fall into each of the two families.
System Software: operating system programs for use on a

personal computer, examples of which are Windows and OS7; real
time operating systems (RTOS) that support embedded applications;
systems like Unix and Linux for professional use and/or for large
computers.

Application software: also for this family wide subgroups can be
identified, based on their use:
• general purpose applications (also known as individual

production tools or systems for office automation):

1 “Inside Linux : A Look at Operating System Development”, fatbrain.com, March 1996.

15

o word processing
o spreadsheets
o presentation tools

• applications for software development or tools for the
construction of other programs:
o assemblers
o compilers
o debuggers
o linkers
o interpreters
o supports for the control of the product configuration
o generators of profiles and code analysers

• information management applications (cfr. A.2.3):
o enterprise resource planning (ERP) – that include various

functionalities in an integrated way, which are sometimes
sold separately, like:

o accounting packages
o applications for market analysis
o customer relationship management (CRM)
o decisions support systems
o programs that manage projects and the coordination of groups

and resources
• tools for professional use, scientific and/or engineering

calculations:
o computer-aided design (CAD)
o programs for statistical analysis
o tools for project management

• publishing and multimedia:
o tools for text composition
o tools for manipulating images and audio/video sequences
o tools for the preparation of didactic material
o tools for composing multimedia pages

• entertainment applications:
o electronic games
o audio and video players and editors

16

The list of subdivisions described above is far from exhaustive but
is an attempted classification of programs that are widely bought and
used today.

Syllabus Items
• Recognise and describe the difference between systems software

and application software
• Name some examples of both categories
• Explain the use of application and systems software

B.1.2. Systems Development Principles and Methodologies

We will now consider software from the “productive” point of
view, as the final object of an intense design and elaboration process to
put together a “product” that meets the expectations of the “customer”.

We should note that, like all commercial objects, software also
undergoes the various evolutional phases of its market.

Therefore, it is possible to make reference to the time periods of
introduction, growth, maturity and decline that characterize the
generally valid commercial market model (see figure B1.01).

fig.B1.01 – Model applicable to the market evolution of the software product

Probably more so than other products, software is subject to
significantly fast changes in the operational conditions and in the

17

functionalities requested by clients. This places new demands on
improvements, adaptations and more generally, modifications that
arise during its lifetime.

Therefore, a rationalization of the processes of inception,
development, delivery, evolution and maintenance of software is
necessary because of the fast changes that software must undergo and
because of its complex nature.

In this context, there is a true life cycle, subdivided in phases
where the following activities are performed (see figure B1.02):
inception, study of feasibility, design, development, verification,
delivery, maintenance and others, all of which are strictly correlated
with the product itself.

fig.B1.02 – Life cycle of the software product

In the following discussion, the more encompassing term of
system will be used to include the complexity of systems. In this
sense, we will refer to systems development.

The subjects which will be covered in depth can often be applied,
not only to software products, but also more generally, in fields
where technology with systems theories are present.

In the last decades, various schools of thought and approaches to
the activity of software development have arisen.

18

For each of these, we can recall a few of the most significant
models of reference proposed in the past:

• waterfall
• spiral
• prototyping
• incremental delivery

In the waterfall model (see figure B1.03), the various phases are
connected in sequence. Each phase transfers to the next phase all of
the necessary information to continue the activities.

Also, the handover from one phase to another consists of a
revision activity and approval (or a design review), conducted by not
only the authors of the activities themselves, but also the people in
charge of the next phase.

Remember that we are focusing on the development of programs
which are much larger than what can be accomplished by a single
person. It is, therefore, necessary to work in teams with adequate
organisation structures.

The spiral model (see figure B1.04), illustrated from Boehm2, and
initially applied in structured environments, like the military, allows
development to occur in several “turns”. With each turn, the classic
phases, similar to those of the waterfall model are undergone in a
simplified way. One of the major advantages of this approach is that
it offers the possibility to produce, at every “turn” a prototype that
allows for refinement, for example, of the complete outline of the
application, or to focus of a few essential aspects, like the interfaces
between other systems.

A particular case of this last consideration is without a doubt that
in which the physical machine is still undergoing phases of
development and updating requiring a long enough time period to
recommend that the development of the application occur in parallel,
in order to reduce the overall time-to-market.

2 Boehm B.W., TRW Defense Systems Group, “A Spiral Model of Software Development
and Enhancement”, IEEE Computer, May 1988.

19

fig.B1.03 – Waterfall development model

Figure B1.04 shows that the main part dedicated to testing resides

in the last turn, moving toward the official delivery phase.
Another observation regarding planning activities: these activities

generally occur in the final part of each turn; planning activities
contribute to the identification of resources necessary for the next
phase.

Software
Requirement

System
Requirement

Preliminary
Design

Detailed
Design

Coding

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

Operations
and

Maintenance

	Introduction
	B.1. Systems Development Process and Methods

