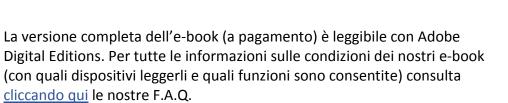
Edoardo Marcucci Valerio Gatta Eva Valeri Amanda Stathopoulos


URBAN FREIGHT TRANSPORT MODELLING: AN AGENT-SPECIFIC APPROACH

FrancoAngeli

Informazioni per il lettore

Questo file PDF è una versione gratuita di sole 20 pagine ed è leggibile con

Adobe Acrobat Reader

I lettori che desiderano informarsi sui libri e le riviste da noi pubblicati possono consultare il nostro sito Internet: <u>www.francoangeli.it</u> e iscriversi nella home page al servizio "Informatemi" per ricevere via e.mail le segnalazioni delle novità. Edoardo Marcucci Valerio Gatta Eva Valeri Amanda Stathopoulos

URBAN FREIGHT TRANSPORT MODELLING: AN AGENT-SPECIFIC APPROACH

FrancoAngeli

Questo volume è stato pubblicato con un contributo MIUR, fondi Prin 2008.

Copyright © 2013 by FrancoAngeli s.r.l., Milano, Italy

L'opera, comprese tutte le sue parti, è tutelata dalla legge sul diritto d'autore. L'Utente nel momento in cui effettua il download dell'opera accetta tutte le condizioni della licenza d'uso dell'opera previste e comunicate sul sito www.francoangeli.it. A Teresa e Leandro per il loro esempio, amore e sostegno. (E.M.)

A Mariachiara, Camilla e Viola...le mie tre muse. (V.G.)

A Piero e Paola, per il loro costante supporto. (E.V.)

For Filomena, for always being there. (A.S.)

Essentially, all models are wrong, but some are useful (p. 424)

Box, G.E.P., Draper, N.R., (1987), Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, NY.

Index

Index of figures			
Index of tables			
Ind	lex of acronyms	12	
Ac	knowledgments	14	
1.	Introduction	16	
2.	Context and literature review	19	
	2.1 Description of study area	19	
	2.2 UFT agents and their coordination	22	
	2.3 Review of UFT policy measures	26	
	2.4 Review of UFT modelling approaches	29	
3.	Methodology	32	
	3.1 Experimental design	33	
	3.2 Model estimation	37	
4.	Survey	42	
	4.1 Separated and joint stakeholder meetings	42	

Bil	bliog	raphic	al references	101
6.	Sur	nmary	and conclusions	97
		5.3.3	Intra-agent heterogeneity and non-linear effects: transport providers	88
		5.3.2.	Non-linear effects: retailers	82
		5.3.1	Intra-agent heterogeneity : own account	77
	5.3 Agent-specific heterogeneity and non-linearity		77	
	5.2	Inter-a	agent heterogeneity	72
	5.1	Agent	-generic effects	71
5.	Res	sults ar	nd policy implications	67
	4.3	Data d	description	59
		4.2.2	Questionnaire administration	55
		4.2.1	Questionnaire development	49
	4.2	Data c	collection	49
		4.1.3	Stakeholder consultations	45
		4.1.2	Organisation	43
		4.1.1	Selection of experts	43

Index of figures

Figure 1	Rome's Limited Traffic Zone	20
Figure 2	Different phases and types of stakeholders' meetings	44
Figure 3	"Top twelve" policies from stakeholders'	7 1
/	meetings	51
Figure 4	Frequency distribution of ideal time windows	
	restrictions by agent-type	65
Figure 5	Frequency distribution of indispensable time	
-	windows by agent-type	66
Figure 6	Retailers' part-worth utilities for entrance fee	85
Figure 7	Retailers' part-worth utilities for probability of	
-	finding L/U bays free	85
Figure 8	WTP distribution: a comparison between MNL	
U	with linear vs. non-linear effects for retailers	87
Figure 9	Transport providers' part-worth utilities for	
U	different policy attributes	89
Figure 10	Transport providers' class membership: CART	
0	results	93

Index of tables

Table 1	Current regulation for urban freight in Rome's	
	LTZ	21
Table 2	Different interests of UFT actors	23
Table 3	Classification of selected public and private UFT	
	measures	28
Table 4	Overview of agents surveyed in stakeholders'	
	meetings	43
Table 5	Stakeholders' "top three" freight problems	47
Table 6	"Top twelve" UFT policies	48
Table 7	Questionnaire's sections	49
Table 8	Attribute levels and ranges used in the SRE	53
Table 9	Overview of the efficient design waves	58
Table 10	Operators' distribution by freight category: a	
	comparison with ATAC study	59
Table 11	Agents' socio-economic characteristics	60
Table 12	Macro-sector of activity for agent-type	61
Table 13	Number of clients served by transport providers	
	for macro-sector of activity	62
Table 14	Number of transport providers by fleet size	
	serving retailers and own-account	62
Table 15	Type of own property vehicles for own-account	
	and transport providers	63
Table 16	Vehicles' EU-standard for own-account and	
	transport providers	64
Table 17	Consignment frequency in LTZ by agent-type	64

Table 18	Description of the variables used in the models	68
Table 19	MNL and WTP/WTA assuming agent-generic	70
	effects	72
Table 20	MNL, preference homogeneity, for own-account	
	operators	73
Table 21	MNL, preference homogeneity, for retailers	74
Table 22	MNL, preference homogeneity, for transport	
	providers	76
Table 23	MNLSE, systematic preference heterogeneity for	
	own-account operators	79
Table 24	LC, discrete mixture of preference heterogeneity,	
	for own-account operators	80
Table 25	WTP/WTA model comparison for own-account	
	operators	82
Table 26	MNL with non-linear effects of the attributes for	
	retailers	84
Table 27	MNL with non-linear effects of the attributes for	
	transport providers	88
Table 28	LC with linear effect of the attributes for transport	
	providers	90
Table 29	LC with non-linear effect of the attributes for	
	transport providers	91
Table 30	WTP comparison between different model	
	specifications for transport providers	95
	specifications for transport providers	15

Index of acronyms

ASC	Alternative Specific Constant
ATAC	Agenzia del Trasporto Autoferrotranviario del Comune
	di Roma (Rome's Bus, Tram and Metro Agency)
AVC	Asymptotic Variance-Covariance matrix
CART	Classification And Regression Trees
CH_4	Methane
COVHET	Covariance Heterogeneity
EC	Error Component
Ho.Re.Ca.	Hotel, Restaurant and Catering
ICT	Information and Communication Technologies
IIA	Irrelevance of Independent Alternatives
LC	Latent Class
LPG	Liquid Propane Gas
LTZ	Limited Traffic Zone
L/U	Loading and Unloading
ML	Mixed Logit
MLEC	Mixed Logit with Error Component
MNL	Multinomial Logit
MNLSE	Multinomial Logit interacting attributes with Socio-
	Economic variables
SC	Supply Chain
SQ	Status Quo
SP	Stated Preference
SRE	Stated Ranking Experiment
UDC	Urban Distribution Centre
020	

UFT	Urban Freight Transport
WTA	Willingness To Accept
WTP	Willingness To Pay

Acknowledgments

The authors are indebted to several people and for institutional support that made this research possible. We gratefully acknowledge the support of the Italian Ministry of University and Research for funding the project entitled "*Methods and models for estimating the efficacy of urban freight distribution strategies*" (project # 2008YEPPM3_005) lead by Prof. Franco Filippi of Sapienza University of Rome. The other Universities participating in the consortium were: University of Trieste, headed by Prof. Romeo Danielis; University of Tor Vergata, headed by Prof. Umberto Crisalli; and Mediterranean University of Reggio Calabria headed by Prof. Giuseppe Musolino.

The results obtained have also, at least indirectly, benefited from a Volvo Research Foundation grant (Innovative solutions to freight distribution in the complex large urban area of Rome, SP-2007-50) that allowed for the development of the knowledge base that materially contributed in defining, clarifying and developing the research endeavours of the project whose results are reported in this book.

We would like also to thank the interviewers who helped acquire the data used for the analysis^{*}.

Furthermore, we also gratefully acknowledge the financial support of the Department of Public Institutions, Economics and Society – DIPES – and of the Centre for Research on the Economics of Institutions – CREI – for the workshop held on the 4th of November 2009, entitled "Transport choice analysis: models and policy implications" at the Faculty of Political Science of Roma Tre University whose participants contributed in shaping the research objectives developed in this project. Special thanks go to Prof. Gerard de Jong, University of Leeds and Significance, and Sean Puckett, University of Sydney, for insightful comments that helped target subsequent research efforts.

Finally, all authors would like to express their sincere thanks to Alessandro Sforna from CREI for his valuable contribution in typesetting this book.

^{*} The interviewers we would like to thank, in alphabetical order, are: Emanuele Barzagli, Silvia De Silvestris, Vivianne Diaferia, Francesco Di Antonio, Marco Genovesi, Giacomo Lozzi, Amedeo Nanni, Antonio Naponiello and Matteo Russo.

1. Introduction

This book investigates urban freight transport (UFT) modelling¹. The study concentrates on developing methods and models for efficient estimation of urban freight distribution policy effects using *stated preference* (SP) techniques. The considerations and results reported are mainly related to a research project, funded by the Italian Ministry of Research, on methods for assessing the efficiency of freight distribution in Rome's Limited Traffic Zone (LTZ).

The general underlying motivation of the research was to define a knowledge framework for forecasting and optimising urban goods movements. In fact, policy interventions, implemented to date in this sector, often produce unsatisfactory results since insufficient attention is paid to behavioural aspects. In particular, the interactions generated by the implemented policies are often overlooked notwithstanding their relevance in determining the final result. The empirical study of relations and interactions among agents within the supply chain (SC) is a key area of study for defining the performance of the system as a whole. The research effort is focused on the

¹ Notwithstanding the present book is the result of a close collaboration among the authors who share the ideas illustrated herein, Edoardo Marcucci materially wrote 1, 5.1, 5.2 and 6; Valerio Gatta 4.2, 4.2.1, 4.2.2, 5, 5.3, 5.3.1, 5.3.2 and 5.3.3; Eva Valeri 3, 3.1, 3.2 and 4.3; Amanda Stathopoulos 2, 2.1, 2.2, 2.3, 2.4, 4, 4.1, 4.1.1, 4.1.2 and 4.1.3.

development of appropriate SP techniques to accurately estimate the effects of the policies implemented.

More in detail, three main objectives are pursued: *i*) estimate the relative importance that various actors involved in UFT (*i.e.* retailers, transport providers and own-account operators) attribute to the main UFT policy variables; *ii*) perform a segmentation analysis to investigate behavioural specificities of different actors, such as acceptance of different freight policies; *iii*) illustrate the contribution that SP methods might offer in assessing *ex-ante* policy acceptability.

From a methodological standpoint an experimental design approach is adopted on the basis of recent developments in the field of SP questionnaire techniques. The UFT policy evaluation process proposed explicitly considers the role each agent-type plays. Indeed, there is evidence that actors involved in UFT have varying propensity to support a given policy depending both on the particular logistic chain they belong to as well as on the role they play within it. In particular, each logistic chain has a specific structure and organisation in terms of the: i) number and type of actors involved, ii) allocation of decision-making power, iii) logistic and economic variables taken into account in the distribution choices. Within each logistic chain, different actors have a different weight in the process of determining the specific freight delivery arrangements and, accordingly, a specific influence regarding remaining logistic and transport variables. In other words, SP surveys allow, analytically and in view of specific policy designs, to quantitatively examine the behavioural aspects involved in UFT. This approach, in line with recent studies, underlines the crucial role agents' decision-making plays in ensuring the success or failure of policy interventions.

The main contributions of the current volume relate to: *i*) preliminary policy attribute definition via stakeholder consultations also linked to attribute level and range definition; *ii*) questionnaire development and administration; *iii*) agent-specific model estimation

with appropriate treatment of heterogeneity, non-linearity and joint heterogeneity and non-linearity in preferences.

The fundamental lesson learned is that there is no one-size-fits-all policy equally impacting all agents. The main weakness of the study is strictly linked to the use of a single case study. This makes generalisations to other contexts difficult. The results obtained indicate that more behavioural analysis is needed in UFT research especially if reliable policy-relevant results are desired.

The book is structured as follows: chapter 2 sets the stage by defining the study context and illustrating the most prominent researches specifically produced in the realm of UFT; chapter 3 reports a detailed account of the various methodological aspects used in the empirical application; chapter 4 describes the survey instrument developed and the data acquired; chapter 5 reports and discusses the econometric results and their policy implications; chapter 6 concludes and illustrates future research endeavours.

2. Context and literature review

This chapter describes the case study context referring to Rome's freight LTZ with its current regulation (section 2.1) and the main elements related to urban freight movements with a specific overview of the: *i*) UFT actors (section 2.2), *ii*) UFT policy measures (section 2.3), and *iii*) state-of-the-art of the modelling issues (section 2.4).

2.1 Description of study area

The study context refers to the LTZ in Rome's historical centre (Figure 1) where restrictions have been put into place since the late eighties. The institution of a formal LTZ in Rome can be dated back to 1989 when a 5 km² area was restricted to non-resident vehicles.

The bans on traffic apply to both passenger and freight vehicles. Access and circulation in the larger pericentral area called "*ZTL Anello Ferroviario*" is prohibited to pre-Euro-1, Euro-1 light and heavy vehicles. Instead, the central area, that is the focus of this study, is characterised by a more detailed legislation. It corresponds to a 4 km² area in the historical centre. Entrance is allowed to the least polluting vehicles (Euro-1 and later) with permission to access